Classifying Behavioral Attributes Using Conditional Random Fields

نویسندگان

  • Michalis Vrigkas
  • Christophoros Nikou
  • Ioannis A. Kakadiaris
چکیده

A human behavior recognition method with an application to political speech videos is presented. We focus on modeling the behavior of a subject with a conditional random field (CRF). The unary terms of the CRF employ spatiotemporal features (i.e., HOG3D, STIP and LBP). The pairwise terms are based on kinematic features such as the velocity and the acceleration of the subject. As an exact solution to the maximization of the posterior probability of the labels is generally intractable, loopy belief propagation was employed as an approximate inference method. To evaluate the performance of the model, we also introduce a novel behavior dataset, which includes low resolution video sequences depicting different people speaking in the Greek parliament. The subjects of the Parliament dataset are labeled as friendly, aggressive or neutral depending on the intensity of their political speech. The discrimination between friendly and aggressive labels is not straightforward in political speeches as the subjects perform similar movements in both cases. Experimental results show that the model can reach high accuracy in this relatively difficult dataset.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of Attributes in a Natural Language Query into Different SQL Clauses

Attribute information in a natural language query is one of the key features for converting a natural language query into a Structured Query Language1 (SQL) in Natural Language Interface to Database systems. In this paper, we explore the task of classifying the attributes present in a natural language query into different SQL clauses in a SQL query. In particular, we investigate the effectivene...

متن کامل

Combining phonetic attributes using conditional random fields

A Conditional Random Field is a mathematical model for sequences that is similar in many ways to a Hidden Markov Model, but is discriminative rather than generative in nature. Here we explore the application of the CRF model to ASR processing by building a system that performs first-pass phonetic recogintion using discriminatively trained phonetic attributes. This system achieves an accuracy le...

متن کامل

1 An Introduction to Conditional Random Fields for Relational Learning

1.1 Introduction Relational data has two characteristics: first, statistical dependencies exist between the entities we wish to model, and second, each entity often has a rich set of features that can aid classification. For example, when classifying Web documents, the page's text provides much information about the class label, but hyperlinks define a relationship between pages that can improv...

متن کامل

Conditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area

Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...

متن کامل

Segmenting Brain Tumors Using Pseudo-Conditional Random Fields

Locating Brain tumor segmentation within MR (magnetic resonance) images is integral to the treatment of brain cancer. This segmentation task requires classifying each voxel as either tumor or nontumor, based on a description of that voxel. Unfortunately, standard classifiers, such as Logistic Regression (LR) and Support Vector Machines (SVM), typically have limited accuracy as they treat voxels...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014